
STAT: the Stack Trace Analysis Tool

Gregory L. Lee

Dorian C. Arnold

Dong H. Ahn

Bronis R. de Supinski

Barton P. Miller

Martin Schulz

STAT: the Stack Trace Analysis Tool
by Gregory L. Lee

by Dorian C. Arnold

by Dong H. Ahn

by Bronis R. de Supinski

by Barton P. Miller

by Martin Schulz

Table of Contents
Disclaimer ... v

Auspice ... v
License .. v

1. Introduction ...1
2. Overview ..3
3. Installing STAT ...7

Dependent Packages..7
Installation...7

4. Using the STAT Command ...9
Description ..9
STAT Options ..9
STAT Usage Example...10

5. Using the STATview GUI..13
Description ..13
The STATview Node Menu ..13
The STATview Toolbar ..15

6. Using the STAT GUI ..17
Description ..17
The STAT GUI Toolbar...17
Sample Options ..18
Equivalence Classes and Subset Debugging..19
Availability ..20

7. Setting STAT Preferences and Options ..21
Preference Files ...21
Loading and Saving Preferences..22
Environment Variables ..22

8. Tips and Tricks Using STAT ...25
Using STAT with IO Watchdog and SLURM ...25
Running STAT in a Batch Script ...25

9. Using the STATBench Emulator ..27
Description ..27
STATBench Options ...27
STATBench Usage Example..29

10. Troubleshooting Guide..31
Troubleshooting..31

Bibliography ..33

iii

iv

Disclaimer

Auspice
This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

License
Copyright (c) 2007-2008, Lawrence Livermore National Security, LLC.

Produced at the Lawrence Livermore National Laboratory

Written by Gregory Lee [lee218@llnl.gov], Dorian Arnold, Dong Ahn, Bronis de
Supinski, Barton Miller, and Martin Schulz.

LLNL-CODE-400455.

All rights reserved.

This file is part of STAT. For details, see http://www.paradyn.org/STAT. Please also
read STAT/LICENSE.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the disclaimer below.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer (as noted below) in the documentation and/or other
materials provided with the distribution.

Neither the name of the LLNS/LLNL nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL
SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Depart-
ment of Energy (DOE). This work was produced at Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National Security,
LLC nor any of their employees, makes any warranty, express or implied, or assumes
any liability or responsibility for the accuracy, completeness, or usefulness of any in-
formation, apparatus, product, or process disclosed, or represents that its use would
not infringe privately-owned rights.

v

Disclaimer

3. Also, reference herein to any specific commercial products, process, or services by
trade name, trademark, manufacturer or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Gov-
ernment or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or Lawrence Livermore National Security, LLC, and shall not be used
for advertising or product endorsement purposes.

vi

Chapter 1. Introduction

The Stack Trace Analysis Tool (STAT) is a highly scalable, lightweight debugger for
parallel applications. STAT was initially developed as a collaboration between the
Lawrence Livermore National Laboratory and the University of Wisconsin. It is cur-
rently open source software released under the Berkeley Software Distribution (BSD)
license. It builds on a highly portable, open source infrastructure, including Launch-
MON for tool daemon launching, MRNet for scalable communication, and Stack-
Walker for obtaining stack traces.

STAT works by gathering stack traces from all of a parallel application’s processes
and merging them into a compact and intuitive form. The resulting output indicates
the location in the code that each application process is executing, which can help
narrow down a bug. Furthermore, the merging process naturally groups processes
that exhibit similar behavior into process equivalence classes. A single representa-
tive of each equivalence can then be examined with a full-featured debugger like
TotalView1 or DDT2 for more in-depth analysis.

STAT has been ported to several platforms, including Linux clusters, IBM’s Blue-
gene/L and Bluegene/P machines, and Cray XT systems. It works for Message Pass-
ing Interface (MPI) applications written in C, C++, and Fortran and also supports
threads. STAT has already demonstrated scalability over 200,000 MPI tasks and its
logarithmic scaling characteristics position it well for even larger systems.

Notes
1. http://www.totalviewtech.com/

2. http://www.allinea.com/index.php?page=48

1

Chapter 1. Introduction

2

Chapter 2. Overview

STAT, the Stack Trace Analysis Tool, helps isolate bugs by gathering stack traces from
each individual process of a parallel application and merging them into a global,
yet compact representation. Each stack trace, as depicted in Figure 2-1, captures the
function calling sequence of an individual process. The nodes are labeled with the
function names and the directed edges show the function calling sequence from caller
to callee. STAT’s stack trace merging process forms a call graph prefix tree, which can
be seen in Figure 2-1. The prefix tree groups together traces from different processes
that have the same calling sequence and labels the edges with the count and set of
tasks that exhibited that calling sequence. Nodes in the prefix tree that are visited by
the same set of tasks are given the same color, providing the user with a quick means
of identifying the various process equivalence classes.

Figure 2-1. A single stack trace (left) and a STAT merged call prefix tree (right)

STAT merges stack traces into 2D spatial and 3D spatial-temporal call prefix trees.
The 2D spatial call prefix tree (Figure 2-2) represents a single snapshot of the en-
tire application. The 3D spatial-temporal call prefix tree (Figure 2-3) takes a series of
snapshots from the application over time and is useful for analyzing time-varying
behavior.

3

Chapter 2. Overview

Figure 2-2. A 2D spatial call prefix tree

Figure 2-3. A 3D spatial call prefix tree

Stack traces based on function names only provide a high-level overview of the ap-
plication’s execution. However, for certain bugs this view may be too coarse-grained
so STAT is also capable of gathering stack traces with more fine-grained information.
In particular, STAT can also record the program counter of each frame or with the
appropriate debug information compiled into the application (i.e., with the "-g" com-
piler flag), STAT can gather the source file and line number of each stack frame. Both
of these refinements can further delineate processes and refine the process equiva-

4

Chapter 2. Overview

lence classes.

In addition, line number information can be fed into a static code analysis engine to
derive the logical temporal order of the MPI tasks Figure 2-4. This analysis traverses
from the root of the tree towards the leaves, at each step analyzing the control flow of
the source code and sorting sibling nodes by the amount of execution progress made
through the code. For straight-line code, this simply means that one task has made
more progress if it has executed past the point of another task, i.e., if it has a greater
line number. This ordering is partial since two tasks in different branches of an if-else
are incomparable. In cases where the program points being compared are within a
loop, STAT can extract the loop ordering variable from the application processes and
further delineate tasks by execution progress. This analysis is useful for identifying
the culprit in a deadlocked or livelocked application, where the problematic task has
often either made the least or most progress through the code, leaving the remaining
tasks stuck in a barrier or blocked pending a message. Note, this feature is still a
prototype. Please contact Greg Lee for an experimental version.

Figure 2-4. STAT’s temporal ordering analysis engine indicates that task 1 has
made the least progress. In this example, task 1 is stuck in a compute cycle, while
the other tasks are blocked in MPI communication, waiting for task 1.

5

Chapter 2. Overview

6

Chapter 3. Installing STAT

Dependent Packages
STAT has several dependencies

Table 3-1. STAT Dependent Packages

Package What It Does
Package Web Page

Graphlib Graph creation, merging, and export

https://outreach.scidac.gov/projects/stat/

Launchmon Scalable daemon co-location

http://sourceforge.net/projects/launchmon/

Libdwarf Debug information parsing (Required
by StackWalker)

http://reality.sgiweb.org/davea/dwarf.html

MRNet Scalable multicast and reduction
network

http://www.paradyn.org/mrnet/

StackWalker Lightweight stack trace sampling

http://www.paradyn.org/html/downloads.html

In addition, the STAT GUI requires Python1 with PyGTK2, both of which are com-
monly preinstalled with many Linux operating systems. The Pygments3 Python mod-
ule can optionally be installed to allow the STAT GUI to perform syntax highlighting
of source code.

Installation
First run configure. You will need to use the --with-package options to specify the
install prefix for mrnet, graphlib, launchmon, libdwarf, and stackwalker. These op-
tions will add the necessary includes and library search paths to the compile op-
tions. Refer to configure --help for exact options. You may also wish to specify the
maximum number of communication processes to launch per node with the option
--with-procspernode=number, generally set to the number of cores per node.

STAT creates wrapper scripts for the STAT command line and STATGUI commands.
These wrappers set appropriate paths for the launchmon and mrnet_commnode ex-
ecutables, based on the the --with-launchmon and --with-mrnet configure options,
thus it is important to specify both of these even if they share a prefix.

STAT will use StackWalker by default. However, it can use Dyninst instead if you
specify --with-dyninst to the configure script.

STAT will try to build the GUI by default. If you need to modify your PYTHON-
PATH envirnment variable to search for side installed site-packages, you can do this
by specifying STAT_PYTHONPATH=path during configure. This will add the appro-
priate directory to the $PYTHONPATH environment variable within the STATGUI
script. To disable the building of the GUI, use the --enable-gui=no configure option.

On BlueGene systems, also be sure to configure --with-bluegene. This will enable
the BGL macro for BlueGene specific compilation. Similarly, to compile on Cray XT
systems, specify --with-cray-xt.

7

Chapter 3. Installing STAT

An example configure line for Cray XT:

./configure --with-launchmon=/tmp/work/lee218/install \
--with-mrnet=/tmp/work/lee218/install \
--with-graphlib==/tmp/work/lee218/install \
--with-stackwalker=/tmp/work/lee218/install \
--with-libdwarf=/tmp/work/lee218/install \
--prefix=/tmp/work/lee218/install --with-cray-xt \
MPICC=cc MPICXX=CC MPIF77=ftn --enable-shared LD=/usr/bin/ld.x

Next you just need to run:

make
make install

Note that STAT hardcodes the paths to its daemon and filter shared object, assuming
that they are in $prefix/bin and $prefix/lib respectively, thus testing should be done
in the install prefix after running "make install" and the installation directory should
not be moved. The path to these components can, however, be overridden with the --
daemon and --filter arguments. Further, the STAT_PREFIX environment variable can
be defined to override the hardcoded paths in STAT.

Notes
1. http://www.python.org/

2. http://www.pygtk.org/

3. http://pygments.org/

8

Chapter 4. Using the STAT Command

Description
STAT (the Stack Trace Analysis Tool) is a highly scalable, lightweight tool that gathers
and merges stack traces from all of the processes of a parallel application. After run-
ning the STAT command, STAT will create a STAT_results directory in your current
working directory. This directory will contain a subdirectory, based on your parallel
application’s executable name, with the merged stack traces in DOT format.

STAT Options

-a, --autotopo

let STAT automatically create topology.

-f, --fanout width

Sets the maximum tree topology fanout to width. Specify nodes to launch com-
munications processes on with --nodes.

-d, --depth depth

Sets the tree topology depth to depth. This option takes precedence over the
--fanout option. Specify nodes to launch communications processes on with
--nodes.

-u, --usertopology topology

Specify the number of communication nodes per layer in the tree topology,
separated by dashes, with topology. This option takes precedence over the
--fanout and --depth options. Specify nodes to launch communications
processes on with --nodes. Example topologies: 4, 4-16, 5-20-75.

-n, --nodes nodelist

Use the specified nodes in nodelist. To be used with --fanout, --depth, or
--usertopology. Example nodes lists: host1; host1,host2; host[1,5-7,9].

-A, --appnodes

Allow tool communication processes to be co-located on nodes running applica-
tion processes.

-p, --procs processes

Sets the maximum number of communication processes to be spawned per node
to processes. This should typically be set to the number of CPUs per node.

-j, --jobid id

Append id to the output directoory and file prefixes. This is useful for associat-
ing STAT results with a batch job.

-r, --retries count

Attempt count retries per sample to try to get a complete stack trace.

-R, --retryfreq frequency

Wait frequency milliseconds between sample retries. To be used with the
--retries option.

9

Chapter 4. Using the STAT Command

-P, --withpc

Sample program counter values in addition to function names.

-i, --withline

Sample source line number in addition to function names.

-c, --comprehensive

Gather 4 traces: function only; function + line; function + PC; and 3D function
only.

-w, --withthreads

Sample helper threads in addition to the main thread.

-t, --traces count

Gather count traces per process.

-T, --tracefreq frequency

Wait frequency milliseconds between samples. To be used with the --traces
option.

-S, --sampleindividual

Save all individual samples in addition to the 3D trace when using --traces
option.

-C, --create arg_list

Launch the application under STAT’s control. All arguments after -C are used
to launch the app. Namely, arg_list is the command that you would normally
use to launch your application.

-D, --daemon path

Specify the full path path to the STAT daemon executable. Use this only if you
wish to override the default.

-F, --filter path

Specify the full path path to the STAT filter shared object. Use this only if you
wish to override the default.

-s, --sleep time

Sleep for time seconds before attaching and gathering traces. This gives the ap-
plication time to get to a hung state.

-l, --log

[FE | BE | ALL]

Enable debug logging of the FE, BE, or ALL.

-L, --logdir log_directory

Dump logging output into log_directory. To be used with the --log option.

10

Chapter 4. Using the STAT Command

STAT Usage Example
The most typical usage is to invoke STAT on the job launcher’s PID:

% srun mpi_application arg1 arg2 &
[1] 16482

% ps
PID TTY TIME CMD

16755 pts/0 00:00:00 bash
16842 pts/0 00:00:00 srun
16871 pts/0 00:00:00 ps

% STAT 16482

You can also launch your application under STAT’s control with the -C option. All
arguments after -C are used for job launch:

% STAT -C srun mpi_application arg1 arg2

With the -a option (or when automatic topology is set as default), STAT will try to au-
tomatically create a scalable topology for large scale jobs. However, if you wish you
may manually specify a topology at larger scales. For example, if you’re running on
1024 nodes, you may want to try a fanout of sqrt(1024) = 32. You will need to specify
a list of nodes that contains enough processors to accommodate the ceil(1024/32) =
32 communication processes being launched with the --nodes option. Be sure that
you have login permissions to the specified nodes and that they contain the mr-
net_commnode executable and the STAT_FilterDefinitions.so library.

% STAT --fanout 32 --nodes atlas[1-4] --procs 8 16482

Upon successful completion, STAT will write its output to a STAT_results directory
within the current working directory. Each run creates a subdirectory named after the
application with a unique integer ID. STAT’s output indicates the directory created
with a message such as:

Results written to /home/user/bin/STAT_results/mpi_application.6

Within that directory will be one or more files with a .dot extension. These .dot files
can be viewed with STATview.

11

Chapter 4. Using the STAT Command

12

Chapter 5. Using the STATview GUI

Description
STATview (Figure 5-1) is a GUI for viewing STAT outputted DOT files. STATview
provides easy navigation of the call prefix tree and also allows manipulation of the
call tree to help focus on areas of interest. Each node in the STAT call prefix tree repre-
sents a function call and the directed edges denote the calling sequence. Further, the
edges are labeled by the set of tasks that have taken that call path. For simplification,
STATview will display the number of tasks in the set and truncate long task lists in
the main display with "..." notation. Similarly, long function names will be truncated
with "..." notation. Nodes are colored based on the set of tasks of the incoming edge,
providing a visual distinction when different tasks take different branches.

Figure 5-1. A screenshot of the STATview GUI.

The STATview Node Menu
By left clicking on a node in the call prefix tree you will get a window displaying
the full list of tasks and the full frame label (Figure 5-2). This window also contains
buttons that allow for the manipulation of the graph from that node. Right clicking on
a node provides a pop-up menu with the same options. Note all of these operations
are performed on the current visible state of the call prefix tree.

13

Chapter 5. Using the STATview GUI

Figure 5-2. The node pop-up window

The node operations are defined as follows:

Collapse

hide all of the descendents of the selected node.

Collapse Depth

collapse the entire tree to the depth of the selected node.

Hide

the same as Collapse, but also hides the selected node.

Expand

show (unhide) the immediate children of the selected node.

Expand All

show (unhide) all descendents of the selected node.

Focus

hide all nodes that are neither ancestors nor descendents of the selected node.
(Note: This will not unhide any hidden ancestors.)

View Source

creates a popup window (Figure 5-3) displaying the source file (only for stack
traces with line number information). This may require the source file’s path to
be added to the search path, through File -> Add Search Paths.

Temporally Order Children

(prototype only) determine the temporal order of the node’s children (only for
stack traces with line number information). Requires the source file’s path and
all include paths to be added to the search path, through File -> Add Search
Paths.

OK

closes the pop-up window.

14

Chapter 5. Using the STATview GUI

Figure 5-3. The source view window. The colored arrows correspond to the nodes
in the call prefix tree.

The STATview Toolbar
The main window also has several tree manipulation options (Figure 5-4). Note the
initial click of a traversal operation operates on the original call prefix tree, while the
remaining operations are performed on the current visible state of the call prefix tree.

Figure 5-4. The STATview tree manipulation toolbar.

The toolbar operations are defined as follows:

Open

Open a STAT generated .dot file

Save As

Save the current graph in .dot format, which can be displayed by STATview or
in an image format, such as PNG or PDF, which can be viewed on any computer
with an image viewer

Undo

Undo the previous operation

Redo

Redo the undone operation

Reset

Revert to the original graph

15

Chapter 5. Using the STATview GUI

Layout

Reset the layout of the current graph and open in a new tab. This is useful for
compacting wide trees after performing some pruning operations.

[Cut] MPI

Collapse the MPI implementation frames below the MPI function call

[Traverse] Eq C

Traverse the prefix tree by expanding the leaves to the next equivalence class set.
The first click will display the top-level equivalence class.

[Traverse Longest] Path

Traversal focus on the next longest call path(s). The first click will focus on the
longest path.

[Traverse Shortest] Path

Traversal focus on the next shortest call path(s). The first click will focus on the
shortest path.

[Traverse Least] Tasks

Traversal focus on the path(s) with the next least visiting tasks. The first click
will focus on the path with the least visiting tasks.

[Traverse Most] Tasks

Traversal focus on the path(s) with the next most visiting tasks. The first click
will focus on the path with the most visiting tasks.

[Traverse Least] TO

Temporal Order traversal focus on the path(s) that have made the least execution
progress in the application. The first click will focus on the path that has made
the least progress.

[Traverse Most] TO

Temporal Order traversal focus on the path(s) that have made the most execution
progress in the application. The first click will focus on the path that has made
the most progress.

[Focus] Task

Only display call paths taken by the specified task

[Focus] Text

Only display call paths containing the specified text

[Identify] Eq C

Identify the equivalence classes of the visible graph. After clicking on this button,
a window will pop up showing the complete list of equivalence classes.

16

Chapter 6. Using the STAT GUI

Description
STAT includes a graphical user interface (GUI) to run STAT and to visualize STAT’s
outputted call prefix trees (Figure 6-1). This GUI provides a variety of operations to
help focus on particular call paths and tasks of interest. It can also be used to identify
the various equivalence classes and includes an interface to attach a heavyweight
debugger to the representative subset of tasks.

Figure 6-1. A screenshot of the STAT GUI

The STAT GUI Toolbar
In addition to the operations provided by STATview, STATGUI provides a toolbar
(Figure 6-2) to control STAT’s operation.

17

Chapter 6. Using the STAT GUI

Figure 6-2. The STAT GUI toolbar.

Attach

Attach to your parallel application and gather an initial sample.

ReAttach

Reattach to the previous parallel application and gather an initial sample.

Detach

Detach from your parallel application.

Pause

Put the application in a stopped state.

Resume

Set the application running.

Sample

Gather and merge a single stack trace from each task in your parallel application.
The application is left in a stopped state upon sampling.

Sample Multiple

Gather and merge multiple stack traces from each task in your parallel applica-
tion over time. The application is left in a stopped state upon sampling.

Sample Options
STAT has several options for stack trace sampling (Figure 6-3).

18

Chapter 6. Using the STAT GUI

Figure 6-3. The STATGUI operation toolbar.

These options are defined as follows:

With Threads

Sample helper threads in addition to the main thread.

function only | function and pc | function and line

Sample traces with function name only, or function name with the CPU program
counter, or function name with the source file and line number.

Run Time Before Sample

Resume the application and let it run for the specified amount of time before
gathering the sample

Retries/Retry Frequency (Advanced)

Sometimes a process may be in a state (i.e., function prologue or epilogue) such
that a complete stack trace may not be obtainable. This option controls how
many times to retry sampling and how often to wait between retries to try and
get a complete trace.

Traces/Trace Frequency

When sampling multiple traces over time, these options specify how many traces
to gather per process and how long to wait between samples.

Gather Individual Samples

When sampling multiple traces over time, this option enables STAT to gather all
of the intermediate 2D prefix trees in addition to the fully merged 3D prefix tree.

Clear On Sample

When sampling multiple traces over time, STAT accumulates the traces that are
gathered. This option determines whether to clear the accumulated traces when
gathering additional traces.

19

Chapter 6. Using the STAT GUI

Equivalence Classes and Subset Debugging
STATGUI can also serve as an interface to attach a full-featured debugger such as
TotalView or DDT to a subset of application tasks. This interface can be accessed
through the "identify equivalence classes" Eq C button, which will pop up the equiv-
alence classes window (Figure 6-4). You can then select a single representative, all, or
none of an equivalence classes’ tasks to form a subset of tasks. The Attach to Subset
buttons will launch the specified debugger and attach to the subset of tasks (note,
this detaches STAT from the application). The Debugger Options button allows you
to modify the debugger path.

Figure 6-4. The equivalence classes window. The colored task lists correspond to
the nodes in the prefix tree.

Availability
The STAT GUI is available on all Peloton and TLCC systems (i.e., Opteron x86_64
machines) and BlueGene systems in /usr/local/bin/STATGUI. Man pages are also
available (man STATGUI).

20

Chapter 7. Setting STAT Preferences and Options

Preference Files
Several files can influence how STAT runs. The first such file is
$prefix/etc/STAT/nodes.txt, which specifies a list of hostnames, one hostname per
line, on which to launch MRNet communication processes. This file is designed to
be shared by all users and should point to shared resources that all users have
remote shell access to, such as login nodes. Note that STAT will test access to a node
before trying to launch communication processes, so it is OK to list nodes that may
be down or unaccessible.

STAT GUI preferences can be set with an installation specific STAT.conf or
user specific .STATrc file. The installation specific file should be placed in
$prefix/etc/STAT/STAT.conf, while the user specific file should be placed in
$HOME/.STATrc. Options specified in the user’s .STATrc file will always take
precedence over the STAT installation’s .STATrc file. Each preference file specifies
one option per line of the format:

Option = Value

Here is a list of options:

Remote Host = hostname

Sets the default remote host to hostname to search for the job launcher process.

Remote Host Shell = rsh|ssh

Sets the default remote host shell to rsh or ssh to get a process listing on remote
hosts.

Job Launcher = exe

Sets the default job launcher for filtering the process listing to exe (i.e., mpirun
or srun).

Tool Daemon Path = path

Use the STAT deamon executable installed in path instead of the default.

Filter Path = path

Use the STAT filter shared object installed in path instead of the default.

Communication Nodes = nodelist

Use the nodes listed in nodelist for MRNet communication processes.

Share App Nodes = true|false

Controls whether to allow communication processes to be co-located on nodes
running application processes. Not supported on BlueGene systems.

Communication Processes per Node = count

Launch no more than count MRNet communication processes per node.

Num Traces = count

Gather count stack trace when sampling multiple.

Trace Frequency (ms) = count

Let the process run count milliseconds between multiple samples.

21

Chapter 7. Setting STAT Preferences and Options

Num Retries = count

Attempt count retries to try to obtain a complete stack trace.

Retry Frequency (ms) = count

Let the process run count milliseconds between retries.

With Threads = true|false

Controls whether to gather stack traces from threads.

Sample Type = function only|function and pc|function and line

Controls the granularity of the stack traces gathered.

DDT Path = path

Use the DDT executable installed in path for subset debugging.

DDT LaunchMON Prefix = path

Use the LaunchMON installation in path for improved DDT subset attaching,
otherwise attach via hostname:PID pairs.

TotalView Path = path

Use the TotalView executable installed in path for subset debugging.

Log Dir = directory

Write STAT debug logs to directory.

Log Frontend = true|false

Controls whether to enable debug logging of the STAT frontend.

Log Backend = true|false

Controls whether to enable debug logging of the STAT backend.

Loading and Saving Preferences
Options from a STAT session can be saved to a preferences file that can be loaded on
subsequent sessions. This can be accessed through the File -> Load Preferences and
File -> Save Preferences menu items.

Environment Variables
Several environment variables influence STAT and its dependent packages. Note that
dependent package environment variables are prefixed with "STAT_" to avoid con-
flict with other tools using that package. The STAT process will then set the appropri-
ate (i.e., without "STAT_") environment variable to pass the value to the dependent
package.

STAT_PREFIX=path

Use prefix as the installation prefix instead of the compile-time STAT_PREFIX
macro when looking for STAT components and configuration files.

STAT_CONNECTION_TIMEOUT=time

Wait time seconds for daemons to connect to MRNet. Upon timeout, run with
the available subset.

22

Chapter 7. Setting STAT Preferences and Options

STAT_DAEMON_PATH=path

Use the STAT daemon located at path instead of the default.

STAT_FILTER_PATH=path

Use the STAT filter shared object located at path instead of the default.

STAT_MRNET_OUTPUT_LEVEL=level

Enable MRNet debug logging at level (0-5).

STAT_MRNET_DEBUG_LOG_DIRECTORY=path

Write MRNet debug log files to path.

STAT_OUTPUT_REDIRECT_DIR=directory

Redirect stdout and stderr to a set of hostname specific files in directory.

STAT_SW_DEBUG_LOG_DIR=directory

Enable StackWalker debug logging to a set of hostname specific files in
directory.

STAT_MRN_COMM_PATH=path

Use the mrnet_commnode binary in path. (Deprecated along with MRNet’s
MRN_COMM_PATH)

STAT_MRNET_COMM_PATH=path

Use the mrnet_commnode binary in path.

STAT_XPLAT_RSH=path

Use the remote shell path for launching mrnet_commnode processes.

STAT_PROCS_PER_NODE=count

Allow up to count communication processes to be launched per node.

STAT_LMON_LAUNCHMON_ENGINE_PATH=path

Use the launchmon binary in path.

STAT_LMON_REMOTE_LOGIN=path

Use the remote shell path for LaunchMON remote debugging.

STAT_LMON_DEBUG_BES=value

Launch the backends under a debugger’s control if value is set (must be enabled
in LaunchMON configuration).

23

Chapter 7. Setting STAT Preferences and Options

24

Chapter 8. Tips and Tricks Using STAT

Using STAT with IO Watchdog and SLURM
STAT can be used in conjunction with the IO Watchdog1 utility, which monitors ap-
plication output to detect hangs. To enable STAT with the IO Watchdog, add the
following to the file $HOME/.io-watchdogrc

search /usr/local/tools/io-watchdog/actions
timeout = 20m
actions = STAT, kill

You will then need to run your application with the --io-watchdog srun option:

% srun --io-watchdog mpi_application

When STAT is invoked, it will create a STAT_results directory in the current working
directory, as it would in a typical STAT run. The outputted .dot files can then be
viewed with STATview. For more details about using IO Watchdog, refer to the IO
Watchdog README file in /usr/local/tools/io-watchdog/README.

Running STAT in a Batch Script
A good way to run STAT is at the end of a batch script. For example, if an application
is estimated to take 10 hours to run and 12 hours are allocated, then you may consider
your application hung if it is still running up to the 12th hour. In such a situation, one
may choose to run STAT in the last 10 minutes of the allocation to get diagnostic
information about the job.

The following example script demonstrates how one might setup STAT to catch a
hung job in a batch script.

#!/bin/sh

perform your batch script prologue/setup here

stat_wait_time_minutes=120
application_exited=0

#run the application and get the launcher PID
srun mpi_ringtopo &
pid=$!

periodically check for application exit
for i in ‘seq ${stat_wait_time_minutes}‘
do

sleep 60
ps -p ${pid}
if test $? -eq 1
then

the application exited, so we’re done!
application_exited=1
break

fi
done

if the application is still running then invoke STAT
if test ${application_exited} -eq 0

25

Chapter 8. Tips and Tricks Using STAT

then
/usr/local/bin/STAT -c ${pid}
waitpid ${pid} # alternatively you may want to ‘kill -TERM ${pid}‘

fi

perform your batch script epilogue/cleanup here

Within the for loop, the script will check every minute (sleep for 60 seconds between
checks) to see if the application is still running by running ‘ps‘ on the PID of the job
launcher. If the application has exited, the script will break from the loop and perform
any remaining operations in the batch script. If the wait time, 120 minutes in this ex-
ample, expires then STAT will be run to gather stack traces from the application. The
wait time should be set such that STAT has enough time to run (i.e., 10 minutes to
be safe) within the batch script’s allocated time. Note the -c option to STAT gathers
a "comprehensive" set of stack traces, with varying levels of detail. After STAT com-
pletes, the script then waits for the application to exit. Alternatively, you may want
to kill the application if it isn’t making any progress.

Notes
1. http://code.google.com/p/io-watchdog/

26

Chapter 9. Using the STATBench Emulator

Description
The Stack Trace Analysis Tool is a highly scalable, lightweight tool that gathers and
merges stack traces from all of the processes of a parallel application. STATBench is a
benchmark that can emulate STAT’s performance. By utilizing your entire parallel al-
location (launching one STATBench daemon emulator per core) and generating arti-
ficial stack traces, STATBench is able model STAT’s performance using less resources
than an actual STAT run requires. With various options, you can also map STAT-
Bench to your target machine architecture and target application. After completion,
STATBench will create a STAT_results directory in your current working directory.
This directory will contain a subdirectory for the current run, with the merged stack
traces in DOT format as well as a performance results text file. An example STAT-
Bench generated prefix tree emulating 1M (1024*1024) tasks can be seen in Figure
9-1.

Figure 9-1. A STATBench generated prefix tree emulating over 1 million tasks.

STATBench Options

-a, --autotopo

let STAT automatically create topology.

-f, --fanout width

Sets the maximum tree topology fanout to width. Specify nodes to launch com-
munications processes on with --nodes.

27

Chapter 9. Using the STATBench Emulator

-d, --depth depth

Sets the tree topology depth to depth. This option takes precedence over the
--fanout option. Specify nodes to launch communications processes on with
--nodes.

-u, --usertopology topology

Specify the number of communication nodes per layer in the tree topology,
separated by dashes, with topology. This option takes precedence over the
--fanout and --depth options. Specify nodes to launch communications
processes on with --nodes. Example topologies: 4, 4-16, 5-20-75.

-n, --nodes nodelist

Use the specified nodes in nodelist. To be used with --fanout, --depth, or
--usertopology options. Example nodes lists: host1; host1,host2; host[1,5-7,9].

-p, --procs processes

Sets the maximum number of communication processes to be spawned per node
to processes. This should typically be set to the number of CPUs per node.

-D, --daemon path

Specify the full path path to the STATBench daemon executable. Use this only if
you wish to override the default.

-F, --filter path

Specify the full path path to the STATBench filter shared object. Use this only if
you wish to override the default.

-t, --traces count

Gather count traces per process.

-i, --iters count

Perform count gathers.

-n, --numtasks count

Emulate count tasks per daemon.

-m, --maxdepth depth

Generate traces with a maximum depth of depth.

-b, --branch width

Generate traces with a max branching factor of width.

-e, --eqclasses count

Generate traces within count equivalence classes.

-l, --log

[FE | BE | ALL]

Enable debug logging of the FE, BE, or ALL.

28

Chapter 9. Using the STATBench Emulator

-L, --logdir log_directory

Dump logging output into log_directory. To be used with the --log option.

STATBench Usage Example
In the simplest form, you can invoke STATBench, from within a parallel allocation,
with no arguments. This will run through with the default settings:

% STATBench

To model your target machine architecture, you can specify the number of tasks to
emulate per daemon. For instance if your target machine has 16-way SMP compute
nodes:

% STATBench --numtasks 16

You may also want to model a specific application. For instance, you may have a
climate modeling code with 5 distinct task behaviors, or equivalence classes. You
can also specify the maximum call depth of your application, the average branching
factor from a given function, and the number of distinct traces expected per task:

% STATBench --eqclasses 5 --maxdepth 17 --branch 5 --traces 4

At larger scales, you may want to employ a more scalable tree topology. For example,
if you’re running 1024 daemon emulators, you may want to try a fanout of sqrt(1024)
= 32. You will need to specify a list of nodes that contains enough processors to ac-
commodate the ceil(1024/32) = 32 communication processes being launched. Be sure
that you have login permissions to the specified nodes and that they contain the mr-
net_commnode executable and the STAT_FilterDefinitions.so library:

% STATBench --fanout 32 atlas[1-4] --procs 8

29

Chapter 9. Using the STATBench Emulator

30

Chapter 10. Troubleshooting Guide

Troubleshooting

stack walks not making it to _start

Processes can be in portions of code from which a debugger cannot walk the stack
(i.e., function prologue or epilogue). Try the -r option to enable STAT to let the process
run a bit and then retry the stack sample.

stack walks with line number information returning ??

Stack traces with line number information requires your code to be compiled with
debug information (i.e., with the -g flag).

/usr/lib/python2.6/site-packages/gtk-2.0/gtk/__init__.py :72: GtkWarning: could
not open display

Be sure to enable X-forwarding and to set your $DISPLAY environment variable.

STATview requires gtk

STAT requires the pygtk module to be installed. If it is side-installed, but sure to set
your $PYTHONPATH environment variable to the directory containing the pygtk
module.

ImportError: No module named STAT

Make sure to run ‘make install‘ to install STAT.py in the lib/python[version]/site-
packages directory or set your $PYTHONPATH environment variable to the direc-
tory containing STAT.py

(ERROR): LaunchMON Engine invocation failed, exiting: No such file or
directory

Make sure the launchmon executable is in your $PATH or set the
$STAT_LMON_LAUNCHMON_ENGINE_PATH engine path to the full path to the
executable.

OptionParsing (ERROR): unknown launcher: a.out

You need to attach to your mpirun or equivalent parallel job launch process.

OptionParsing (ERROR): the path[/usr/local/bin/STATD] does not exit.

STAT looks for its components in the configured $prefix. Be sure to run ‘make install‘
or set STAT_DAEMON_PATH to the full path to the STATD executable.

LaunchMON prints a usage message.

This is typically a mismatch in versions of the LaunchMON API and the LaunchMON
engine. Make sure to set your $STAT_LMON_LAUNCHMON_ENGINE_PATH env-
iornment variable to the full path to the appropriate launchmon executable.

(ERROR): accepting a connection with an engine timed out

STAT may need additional time to launch all of its daemons. You may need to set
your $LMON_FE_ENGINE_TIMEOUT to a larger value, such as 600.

31

Chapter 10. Troubleshooting Guide

32

Bibliography

Dong H. Ahn, Bronis R. de Supinski, Ignacio Laguna, Gregory L. Lee, Ben Liblit, Bar-
ton P. Miller, and Martin Schulz, “Scalable Temporal Order Analysis for Large
Scale Debugging,” Supercomputing 2009, Portland, Oregon, November 2009.

Gregory L. Lee, Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Matthew
Legendre, Barton P. Miller, Martin Schulz, and Ben Liblit, “Lessons Learned at
208K: Towards Debugging Millions of Cores,” Supercomputing 2008, Austin,
Texas, November 2008.

Dong H. Ahn, Dorian C. Arnold, Bronis R. de Supinski, Gregory L. Lee, Barton P.
Miller, and Martin Schulz, “Overcoming Scalability Challenges for Tool Dae-
mon Launching,” 37th Internation Conference on Parallel Processing (ICPP-08),
Portland, Oregon, September, 2008.

Gregory L. Lee, Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Barton P.
Miller, and Martin Schulz, “Benchmarking the Stack Trace Analysis Tool for
BlueGene/L,” International Conference on Parallel Computing (Parco) 2007,
Aachen and Julich, Germany, September 2007.

Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory L. Lee, Barton P.
Miller, and Martin Schulz, “Stack Trace Analysis for Large Scale Applications,”
International Parallel & Distributed Processing Symposium, Long Beach, California,
March 2007.

Notes
1. ftp://ftp.cs.wisc.edu/paradyn/papers/Miller09ScalableDebugging.pdf

2. ftp://ftp.cs.wisc.edu/paradyn/papers/Lee08ScalingSTAT.pdf

3. ftp://ftp.cs.wisc.edu/paradyn/papers/Ahn08LaunchMON.pdf

4. ftp://ftp.cs.wisc.edu/paradyn/papers/Lee07STATBench.pdf

5. ftp://ftp.cs.wisc.edu/paradyn/papers/Arnold06STAT.pdf

33

34

	STAT: the Stack Trace Analysis Tool
	Table of Contents
	Disclaimer
	Auspice
	License

	Chapter 1. Introduction
	Chapter 2. Overview
	Chapter 3. Installing STAT
	Dependent Packages
	Installation

	Chapter 4. Using the STAT Command
	Description
	STAT Options
	STAT Usage Example

	Chapter 5. Using the STATview GUI
	Description
	The STATview Node Menu
	The STATview Toolbar

	Chapter 6. Using the STAT GUI
	Description
	The STAT GUI Toolbar
	Sample Options
	Equivalence Classes and Subset Debugging
	Availability

	Chapter 7. Setting STAT Preferences and Options
	Preference Files
	Loading and Saving Preferences
	Environment Variables

	Chapter 8. Tips and Tricks Using STAT
	Using STAT with IO Watchdog and SLURM
	Running STAT in a Batch Script

	Chapter 9. Using the STATBench Emulator
	Description
	STATBench Options
	STATBench Usage Example

	Chapter 10. Troubleshooting Guide
	Troubleshooting

	Bibliography

